Halbleiter Aktuell - bei MM-Physik 

26. Sep. 2001 © Schulphysik">email: Schulphysik

Pressemitteilung Technische Universität Bergakademie Freiberg, 25.09.2001
TU Bergakademie Freiberg präsentiert 
Biomaterialien und Feuchtesensor 
auf der Materialica in München
Von: Katrin Apenburg
Mit der Entwicklung und Optimierung von Biowerkstoffen beschäftigen sich Wissenschaftler am Institut für Keramische Werkstoffe (IKW) der TU Bergakademie Freiberg. Im Mittelpunkt der Forschungen stehen dabei u.a. Titanlegierungen. Sie gehören zu den wenigen metallischen Werkstoffen, die eine sehr gute Verträglichkeit mit dem menschlichen Körper aufweisen und finden aufgrund ihrer mechanischen Eigenschaften für Prothesen Anwendung, die lasttragende Funktionen erfüllen müssen, z. B. im Dentalbereich, für Knie- und Hüftendoprothesen. Die durchschnittliche Verweilzeit von Hüftendoprothesen im menschlichen Körper liegt derzeit bei 10 bis 15 Jahren. Um jedoch auch jüngere Patienten mit einer Prothese zu versorgen oder der steigenden Lebenserwartung gerecht zu werden besteht weiterer Entwicklungsbedarf. Ziel ist dabei die Erhöhung der Langzeitbeständigkeit von Prothesen. Aktuelle Forschungsarbeiten am Freiberger IKW befassen sich deshalb mit der Oberflächenveredlung von Titanwerkstoffen und CoCr-Legierungen durch geeignete keramische Schichten. Hierbei werden Plasmaverfahren angewendet, aber auch Abscheidemethoden wie Sol-Gel-Technik oder Elektrophorese sind von hoher Relevanz. Zur Erhöhung der Verschleißbeständigkeit von Hüftgelenkskugeln wird bspw. in Zusammenarbeit mit industriellen Forschungseinrichtungen an der Optimierung von Diamant-ähnlichen Kohlenstoffschichten (Diamond-like Carbon: DLC) gearbeitet. DLCs gehören zu den bioinerten Werkstoffen. Um die vorteilhaften Eigenschaften der harten, elastischen und verschleißbeständigen Kohlenstoffschichten zum Tragen zu bringen, sind exakte Anpassungen der Schichtstruktur an die konkreten Belastungen der Implantatoberfläche notwendig. Besonders im stark tribologisch beanspruchten Hüftgelenk konnten sich bisher DLC-Beschichtungen noch nicht durchsetzen. Problematisch sind hier Schichtabplatzungen, die zur katastrophalen Schädigung der Gelenkreibpaarung führen. Ein weiterer Schwerpunkt auf dem Gebiet der Biomaterialien am Institut ist die Herstellung, Charakterisierung und Optimierung von faserverstärkter Biokeramik auf Hydroxylapatit-Basis. Natürlicher Knochen hat die Fähigkeit, Dichte und Gefüge an die äußeren Belastungen anzupassen. Infolge mechanischer Belastung werden Knochenzellen zum Knochenauf- und -umbau angeregt. Beim Knochenaufbau erfolgt über mehrere Zwischenschritte die Formation einige Mikrometer dicker Knochenlammellen, die konzentrisch um ein zentrales Blutgefäss entstehen. Trotz des für Keramiken typischen spröden Verhaltens ermöglicht der spezielle Gefügeaufbau des Knochenapatits ein schadenstoleranteres Verhalten. Der mineralische Anteil in Form dieses Knochenapatites beläuft sich auf ca. 70 Gewichtsprozent. Ein weiterer Bestandteil sind Kollagenfasern, die bei mechanischer Belastung Zugkräfte aufnehmen. Knochen ist demzufolge ein biologischer Verbundwerkstoff bestehend aus der gefügeoptimierten, keramischen Komponente Knochenapatit, den fasrigen Kollagenen sowie weiteren nicht-kollagenen Proteinen und Körperflüssigkeit. Die Fertigung von faserverstärkten Biokeramiken auf Hydroxylapatit-Basis beschäftigt sich mit der synthetischen Nachempfindung des natürlichen Knochenaufbaus. Aufgrund der chemischen und strukturellen Ähnlichkeit dieser neuartigen Biomaterialien und des natürlichen Knochens wird eine deutliche Verbesserung der Bioverträglichkeit und schließlich der Langzeitbeständigkeit erwartet. Kontakt: TU Bergakademie Freiberg Fakultät für Werkstoffwissenschaften und Werkstofftechnologie Institut für Keramische Werkstoffe Frau Dr. Annett Dorner-Reisel Tel.: 03731/39-2203 e-mail: dorner@anw.ikw.tu-freiberg.de
Einen keramischen Feuchtesensor zur Messung der Luftfeuchte entwickelten Wissenschaftler am Institut für keramische Werkstoffe der TU Bergakademie Freiberg. Dieser Sensor, 6 mal 8 mm groß, besteht aus einem keramischen Substrat (Aluminiumoxid), auf das in Dickschichttechnik sowohl die kammartig strukturierten Elektroden als auch die sensitive keramische Schicht aufgebracht werden. Die 40 µm dicke sensitive Schicht ist hochporös mit einem großen Anteil Poren im Bereich bis ca. 10 Nanometer. Der Sensor arbeitet nach dem kapazitiven Messprinzip, d. h. bei Veränderung der Feuchte wird Wasser von der keramischen Schicht adsorbiert bzw. desorbiert, was aufgrund der hohen Dielektrizitätskonstante des Wassers eine messbare Kapazitätsänderung in der Schicht bewirkt. Charakteristisch für den Sensor ist ein Arbeitsbereich von 10 bis 80% relativer Feuchte bei Raumtemperatur. Zur Auswertung der Messsignale wird er mit einem ASIC ausgestattet. Gegenwärtig laufen am Freiberger Institut Forschungsarbeiten zur Entwicklung eines Feuchtesensors, der bei Temperaturen bis 200°C messen kann. Eingesetzt werden könnte dieser Sensor bei metallurgischen Prozessen, um beispielsweise die Feuchte in Verbrennungsgasen zu bestimmen. Beide Projekte werden vom Bundesministerium für Bildung und Forschung (BMBF) als Verbundvorhaben mit Industriepartnern gefördert. Kontakt: Institut für Keramische Werkstoffe Frau Rosemarie Dittrich Tel.: 03731/39-2644, Fax: 03731/39-3662 e-mail: dittrich@anw.ikw.tu-freiberg.de
Präsentiert werden die Forschungsprojekte des Institutes für Keramische Werkstoffe der TU Bergakademie Freiberg vom 1. bis 4. Oktober 2001 auf der Münchner Messe MATERIALICA in der Halle C1 am Stand C1.204

Pressemitteilung Friedrich-Alexander-Universität Erlangen-Nürnberg, 25.09.2001
Strom aus Siliziumwaffeln
Von: Ute Missel

Ein ganz besonderes "Kochrezept" für Silizium-Solarzellen wurde am Bayerischen Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern) in Erlangen entwickelt. Die bayerischen Forscher stellen hauchdünne Waffeln aus einkristallinem Silizium her. Diese Waffeln sind nicht zum Essen gedacht, diese Waffeln werden für neue Solarzellen hergestellt. Die Waffelform erhöht die Absorption des Sonnenlichts in der Siliziumschicht, so dass wenige tausendstel Millimeter genügen, um genauso viel Solarstrom zu erzeugen wie in den bekannten herkömmlichen dicken Zellen. Das Herstellungsverfahren von Siliziumwaffeln, der sogenannte PSI-Prozess der Erlanger Forscher um Projektleiter Dr. Rolf Brendel am ZAE Bayern und Prof. Dr. Max Schulz vom Lehrstuhl für Angewandte Physik der Universität Erlangen-Nürnberg, eröffnet neue Perspektiven, um teures Siliziummaterial einzusparen und um so die Solarzellen billiger herzustellen. Beim PSI-Prozess wird eine dünne Silizium-Schicht auf eine waffelförmige Unterlage aufgebracht. Diese Unterlage ermöglicht, vergleichbar mit einem Waffeleisen, das Herstellen von waffelförmigen Siliziumschichten. Die Oberfläche der Unterlage ist mit porösem Silizium (daher der Name PSI-Prozess) bedeckt, das, ähnlich dem Fett beim Waffelbacken, das Ablösen der Solarzelle von der Unterlage erlaubt. Es ist jetzt gelungen, 16 µm dünne "Waffel-Solarzellen" mit einem Wirkungsgrad von 12,5 Prozent herzustellen. Herkömmliche kommerzielle Solarzellen sind 20 mal dicker. Die formgebende Unterlage aus Silizium steht für weitere Prozesszyklen zur Verfügung, so dass viele Solarzellen auf einer Unterlage "gebacken" werden können. Mit einem einfachen Trick und ohne großen zusätzlichen Aufwand wird zudem statt nur einer einzelnen Solarzelle gleich ein komplettes Solarmodul bestehend aus mehreren seriell verschalteten Einzelzellen hergestellt. Ein erstes 5x5 cm2 großes Modul bestehend aus fünf integriert verschalteten Waffelsolarzellen lieferte eine Spannung von 3 Volt bei einem Wirkungsgrad von 10,6 Prozent. Dies ist ein Spitzenwert, mit dem die vom Bundesministerium für Wirtschaft und Technologie sowie vom Bayerischen Staatsministerium für Wirtschaft, Verkehr und Technologie geförderten Arbeiten international für Aufsehen gesorgt haben. Die Erlanger Waffel-Solarzelle ist für vielfältige kleine Stromverbraucher des täglichen Lebens nützlich. Auch für die Stromversorgung von Satelliten im Weltraum ist die Waffel-Solarzelle geeignet, weil dünne Siliziummodule der kosmischen Strahlung länger standhalten können.
* Weitere Informationen: Prof. Dr. Max Schulz, Lehrstuhl für Angewandte Physik Tel.: 09131/85 -28421, Fax: 09131/85 -28423 Staudtstr.7, 91058 Erlangen E-Mail: Max.Schulz@rzmail.uni-erlangen.de

 

Aktuelles

MSR

Jufo

Jobs

Kontaktmenu

Sucher

homepage


WWW.SCHULPHYSIK.DE

www.physiker.com
MM-Physik-ZUM
MM-Physik-Würzburg-Online

05. März 2005 © Schulphysik - privat

Impressum - Disclaimer - Awards