Astro aktuell bei MM-Physik 
30. September 2001 © Schulphysik

THE BLACK HOLE OF GENEVA 
The American Institute of Physics Bulletin of Physics News September 26, 2001
by Phillip F. Schewe, Ben Stein, and James Riordon 
.Black holes are known as the omnivorous destroyers of stars. In reality black holes not only take but give. Near their event horizons, where space is so drastically warped, black holes spawn particle-antiparticle pairs out of sheer vacuum. In some cases one of the pair escapes beyond the horizon while its counterpart is pulled back into the hole. Thus black holes can shed energy in the form of this "Hawking radiation." Physicists hope to bring this whole process down to earth by manufacturing tiny black holes amid the stupendous smashups of protons at the Large Hadron Collider (LHC) being built at CERN. Until recently theorists thought gravity was so weak compared to the other forces that it, and gravitationally bound objects like black holes, could be studied on an equal footing with the other forces like the strong nuclear force only at energies of 10^19 GeV. In the past few years, though, some models featuring extra spatial dimensions hint that the unification of the forces, including gravity, might set in at much more modest energies, even in the TeV realm of the LHC. Thus one can contemplate forming a TeV- mass black hole even as one can imagine creating new particles in that mass range. But what would a black hole look like? Savas Dimopoulous of Stanford (650-723-4231) and Greg Landsberg of Brown University (landsberg@hep.brown.edu, 401-863-1464) have drawn a picture in which proton-proton collisions could create black holes with a cross section (likelihood of creation) only about a factor of ten less than for producing top quarks and at a rate of up to one per second (see figure at http://www.aip.org/mgr/png ). A black hole produced in this way would quickly decay, not in the usual particle way but in a furious burst of Hawking radiation. A particularly striking signature of the black hole would involve an electron, muon, and photon in the final state of debris particles. Properties of Hawking radiation could tell physicists about the shape of extra spatial dimensions. A possibility of recreating the early moments of the universe in the lab would further unite particle physics and cosmology
(Physical Review Letters, 15 October 2001; text at
http://www.aip.org/physnews/select )
 

Grundlagen

Planeten

Sonne

Kometen

Sterne

Galaxien

Kosmologie

Raumwetter

Geräte

Bilder

Raumfahrt

Science

Geophysik Klima Karten Wetter Raumwetter Gravitation

Aktuelles

Institute

Links

Programme

Suchen

Homepage

 

Mechanik Akustik Elektrik Optik Quanten Kerne Relativität Konstanten
Gravitation Rotation Wellen Geophysik Klima science Medizin Verkehr

Interaktiv-JAVA

Experimente

Online-Kurse 

Schule

Institute

Museen

news

topten

Geschichte Physiker MSR jufo Philosophie Mathe Klima Astronomie
Physlets Versuche Aufgaben Didaktik Literatur Kontakt Neues

Sucher

Programme Schülerhilfen scripten  Pisa Lehrmittel Projekte Aktuelles homepage

 

WWW.SCHULPHYSIK.DE

www.physiker.com
MM-Physik-ZUM
MM-Physik-Würzburg-Online

05. März 2005 © Schulphysik">Schulphysik - privat

Impressum- Disclaimer - Awards