25. September 2001
Schulphysik">email: Schulphysik

Aktuell: Teilchenphysik

Kollaps oder immer auf der Flucht?
Neutrinomasse entscheidet!
Pressemitteilung Physikalisch-Technische Bundesanstalt (PTB) bereits im Frühjahr 2001
von Dipl.-Journ. Erika Schow

Helmholtz-Preis für die hochpräzise Bestimmung einer Obergrenze der Neutrinomasse verliehen
bereits im Frühjahr 2001

Ein sehr kleines, aber zugleich sehr häufiges Teilchen könnte das Schicksal des Universums bestimmen. Ist das Teilchen zu leicht oder wiegt es garnichts, könnte das Universum bis in alle Zeiten "auf der Flucht" sein und sich ins Grenzenlose ausdehnen. Ist es dagegen mit einer zwar kleinen, aber doch merklichen Masse in der Welt, dann wird die Expansion des Universums irgendwann gestoppt und die Bewegung aller Massen kehrt sich um - das Universum kollabiert. Die entscheidende Frage nach der Masse dieses Teilchens, das die Physiker Neutrino nennen, kann mittlerweile zumindest zur Hälfte sehr präzise beantwortet werden: Eine Mainzer Physikergruppe der Johannes Gutenberg-Universität bestimmte durch Zerfallsexperimente an radioaktivem Tritium sehr präzise eine Obergrenze dieser Masse.
Für diese Arbeit erhalten die Physiker Jochen Bonn und Christian Weinheimer den Helmholtz-Preis des Jahres 2001, mit dem messtechnische Höchstleistungen ausgezeichnet werden. Die Messtechnik, mit der die Neutrinomasse bestimmt werden soll, ist vor allem so schwierig, weil das Teilchen so flüchtig und unnahbar ist - es nimmt nicht so leicht Kontakt zu seiner Umgebung und auch nicht mit einem Messinstrument auf. Jahrelang waren in allen Experimenten - unabhängig, von welcher Gruppe sie durchgeführt wurden - die auftretenden Fehler so groß, dass den Messungen kaum zu trauen war. Teilweise führten die Auswertungen der Versuche gar zu einer negativen Masse des Teilchens, was sich nun tatsächlich kein Mensch und auch kein Physiker mehr vorstellen kann. Die Mainzer Gruppe um Bonn und Weinheimer hingegen untersuchte - in 15-jähriger akribischer Arbeit - verwandte experimentelle Bedingungen sehr systematisch und konnte die markantesten Fehlerquellen der Neutrinoexperimente aufspüren und, dies vor allem, bei eigenen Versuchen ausschließen. Das Mainzer Versuchsprinzip beruht auf einer Aussage, die schon die Lehrbücher der Physik seit langem publizieren. Danach werden Neutrinos stets bei einer gewissen Sorte des radioaktiven Zerfalls von Atomkernen, dem sogenannten b-Zerfall, sozusagen en passant neben Elektronen oder Positronen produziert. Die Aufgabe des Experimentators besteht nun darin, möglichst viele der vom Kern ausgesandten Elementarteilchen einzusammeln und ihre Bewegungsenergie genau zu messen. Aus der energetischen Verteilung der Teilchen, dem Energiespektrum, lässt sich dann, zumindest im Prinzip, die Teilchenmasse ablesen. Die experimentellen Schwierigkeiten fangen jedoch an, wenn in dem für die Neutrinos interessanten Teil des Spektrums (am unteren Ende der Energieskala) nur sehr wenige Teilchen eingefangen und analysiert werden können. Die zu kleine Stichprobenmenge führt zu unklaren statistischen Aussagen und gefährdet damit die Aussagekraft der Messung. Diesen Schwierigkeiten zum Trotz gelang es den Mainzer Physikern, eine sehr kleine und zugleich sehr glaubwürdige Obergrenze der Neutrinomasse aus ihren Experimenten abzulesen. Die experimentelle Kunst besteht gerade darin, eine möglichst kleine Obergrenze anzugeben, die damit möglichst nah an der Wirklichkeit ist. (Ein kleiner Vergleich, um diese Obergrenze einzuordnen: Keine Kunst ist es hingegen zu sagen, das Neutrino habe höchstens eine Masse von einem Tausendstel der Elektronenmasse. Dies stimmt immer, denn das Elekron, selbst schon eines der leichten Elementarteilchen, ist im Vergleich zu dem Neutrino ein echtes Schwergewicht.) Und das Universum? Expandiert es nun auf ewig oder wird es einst kollabieren? Darüber werden sich die Astrophysiker noch eine Weile streiten. Denn die von den Mainzern gefundene Obergrenze der Neutrinomasse liegt gerade in dem Bereich, in dem der Umschlag zwischen Expansion und Kollaps erfolgen könnte.

Von mm-Physik ausgewählte weiterführende Links

Aktuell Physik
Aktuell Astronomie
Aktuell Klima
Aktuell Ozon
Aktuell Mathematik
Aktuell Kernenergie
News-Foren
Fachliteratur
Datenblätter
Jobs
Kontakmenü
Kontake
Forum
Sucher
Suchmaschinen
Homepage
'Neutrinos für alle' Wien - KARMEN Neutrino Exp. Karlsruhe
The Neutrino Oscillation Industry
Neutrinos quer durch die Alpen aktuell - 26. Mai 2000
AMANDA (Antarctic Muon and Neutrino Detector Array)
AMANDA ICRC '97 papers - hep-ph neutrino oscillations
Schwache Wechselwirkung, Neutrinos
Neutrino Physics at a Muon Collider
Physics Opportunities of a Neutrino Factory Download pdf diverser Artikel
NEUTRINO OSCILLATION HAS BEEN DEMONSTRATED AIP
The Solar Neutrino Problem
Physics News Graphics: The Super-Kamiokande Neutrino Detector
Physics News Preview: Neutrino Oscillation
Neutrino history Home page
Particle Physics, Astrophysics, Neutrinos, Underwater Detectors
Taylor University: Physics Department: Research: Particle Physics
Webcast: Particle Physics Seminar: Neutrino mass
Description of the neutrino
Yahoo! Science>Physics>High-Energy and Particle Physics>Neutrino Detection


WWW.SCHULPHYSIK.DE

www.physiker.com
MM-Physik-ZUM
MM-Physik-Würzburg-Online

05. März 2005 © Schulphysik - privat

Impressum - Disclaimer - Awards